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Abstract: The Singular Value Decomposition expresses image data in terms of number of Eigen vectors depending 

upon the dimension of an image. The psycho visual redundancies in an image are used for compression. Thus an image 

can be compressed without affecting the image quality. This paper presents one such image compression technique 

called as SVD. Basic mathematics of SVD is dealt with in detail and results of applying SVD on an image are also 

discussed. The MSE and compression ratio are used as thresholding, parameters for reconstruction. SVD is applied on 

variety of images for experimentation. The work is concentrated to reduce the number of eigen values required to 

reconstruct an image. 
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I. INTRODUCTION 

 

With the advancement in technology, multimedia content 

of digital information is increasing day by day. Which 

mainly comprises of images either pictures or video 

frames. Hence storage and transmission of these images 

requires a large memory space and bandwidth. The 

solution to this problem is to reduce the storage space 

required for these images which can be done by 

compressing the image while maintaining acceptable 

image quality. Many methods are available for 

compression of still images. But the most widely used 

image compression technique today is JPEG (Joint 

Photographic Experts Group) which uses DCT (Discrete 

Cosine Transform) for compression of images. In this 

paper we are discussing a image compression technique 

called SVD (Singular Valued Decomposition). Even 

though DCT gives high energy compaction as compared to 

SVD which gives optimal energy compaction, SVD 

performs better than DCT in case of images having high 

standard deviation (i.e. higher pixel quality). SVD is a 

linear matrix transformation used for compressing images.  
 

Using SVD an image matrix is represented as the product 

of three matrices U, S, and V where S is a diagonal matrix 

whose diagonal entries are singular values of matrix A. 

The image A can also be represented by using less number 

of singular values, thus, presenting necessary features of 

an image while compressing it. The compressed image 

requires less storage space as compared to the original 

image. To choose the value of k i.e. number of Eigen 

values for compression and reconstruction of the image is 

an important decision for acceptable reconstruction. It 

varies with application and in this work compression ratio 

is used to select the number of Eigen values out of the 

maximum. It is observed that if the value of k chosen is 

equal to the rank of the image, the reconstructed image is 

closer to the original image. As the value of k decreases  

 

 

from the rank image quality degrades. Second observation 

is that as the compression ratio is high image quality is 

poorer and if compression ratio is low, image with 

superior quality can be reconstructed but with less 

compression. Therefore compression ratio and image 

quality is required to select appropriately.  

 

Section I presents literature survey and brief outline of the 

paper. Section II presents the SVD computations on 

images. Section III presents the experimentation and the 

proposed procedure to estimate the percentage of 

eigenvectors required to reconstruct the original image 

using the SVD and PSNR. Section IV presents the results 

and the discussions. Finally Section V presents the 

conclusion. 

 

II. BASIC MATH’S OF SVD 

 

Singular Value Decomposition(SVD) is a linear image 

matrix transformation in which an image matrix G is 

decomposed into 3 component matrices L, D & R such 

that 

G = LDR
T
                               (1) 

 

where G is a m × n matrix 

D is a m × n diagonal matrix in which the entries along the 

diagonal of D are singular values of G. Singular value of a 

matrix is calculated by taking square root of its eigen 

value. L is a m × m matrix containing left singular vectors 

of G and R is a n × n matrix containing right singular 

vectors of G. 
 

L and Rare orthonormal matrices which meansLL
T
 = I and 

RR
T 

= I 
 

In matrix form equation (1) can be written as 
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Where l1, l2, …………… lm are m×1 column vectors r1, r2, 

…………... rn are 1×n row vectors and σi for i=1, 

2,…….N are the singular values of matrix G. 

The singular values are arranged along the diagonal of D 

in such a way that 

σ1≥σ2≥σ3………..≥σN≥0 

Also, σi = √λi 

Whereλi for i = 1, 2,……….,N are the eigenvalues of 

image matrix G. 

Calculating L, D & R: From equation (1), we know that 

G = LDR
T
 

Therefore, G
T
 = (LDR

T
 )

T
 = RD

T
 L

T 

GG
T
 = LDR

T
 × RD

T
 L

T
 

= LDD
T
 L

T
 

= LD
2
 L

T
(2) 

 (since RR
T
 =I) 

From above equation, it is clear that matrix L is obtained 

from the eigenvectors of GG
T
. Similarly, it can be shown 

that, 

G
T
 G = RD

T
 DR

T
 = RD

2
 R

T
 

Therefore, eigenvectors of G
T
 G gives R. 

 

III. PROPERTIES OF SVD 

 

Following are some of the important properties of SVD  

1. The rank of matrix G is equal to the number of non-

zero singular values. 

2. GG
T
 = LD

2
 L

T
 and hence L daigonalizes the matrix G 

and column vectors of L are the eigenvectors of GG
T
. 

3. Similarly, G
T
 G = RD

2
R

T
 , R diagonalizes G and hence 

eigenvectors of G
T
 G are column vectors of R.  

4. The singular values of matrix G i.e. σ1, σ2, 

σ3………..,σN are unique, however the matrices L and 

R are not unique. 

 

Image compression techniques reduce the number of bits 

required to represent an image by taking advantage of 

these redundancies. Removing the redundancies is 

equivalent to reducing the number of bits required to 

represent an image without much compromise in the 

image quality. Different image compression techniques 

apply different methods or more appropriately coding 

algorithms to achieve this. Now let us see how this is 

achieved using SVD. By applying SVD on an image, the 

image matrix G is decomposed into 3 different matrices L, 

D and R. However, simply applying SVD on an image 

does not compress it. To compress an image, after 

applying SVD, only a few singular values are retained 

while other singular values are discarded. This follows 

from the fact that singular values are arranged in 

descending order on the diagonal of D and that first 

singular value contains the greatest amount of information 

and subsequent singular values contain decreasing 

amounts of image information. Thus, the lower singular 

values containing negligible or less important information 

can be discarded without significant image distortion. 

Furthermore, property 1 of SVD (section 3) says that “the 

number of non-zero singular values is equal to the rank of 

G.” But even if the lower order singular values after the 

rank of the matrix are not zero, they have negligible values 

and are treated as noise. 

G=l1σ1r1
T
 + l2σ2r2

T
 ……+ lrσrrr

T
 ……. +lNσNrN

T
    (3) 

 

where r is the rank of G 

 

From property 1 of SVD (refer section 3 above), it follows 

that truncating equation (2) till r values does not make any 

significant change in the image. But then the amount of 

compression achieved will be very less while the image 

quality is nearly same as original. 

 

For good amount of compression to be achieved, only the 

first k values of equation (3) are taken so that equation (3) 

becomes 

G=l1σ1r1
T
 + l2σ2r2

T
 ……. +lkσkrk

T
                     (4) 

where k < r 

 

The image reconstructed using equation (4) above will 

reduce the storage space requirement to k*(m+n+1) bytes 

as against the storage space requirement of m*n bytes of 

the original uncompressed image. Now, our goal of 

compression is achieved if the storage space required by 

the compressed image is less than that required by the 

original image. In other words, 

m*n > k*(m+n+1)                       (5) 

 

This implies that value of k should be smaller than 

m*n/(m+n+1) in order to compress any image thus putting 

an upper limit on the value of k.  

In short, value of k is chosen such that good amount of 

compression is achieved while image quality is maintained 

above the minimum acceptable limit.  

To compare the results of different compression 

techniques and also to measure the degree to which an 

image is compressed, many performance measures are 

available such as 

1. Compression Ratio: Compression Ratio is the ratio of 

the storage space required to store original image to 

that required to store a compressed image and is given 

by: 

Compression Ratio = m*n / (k*(m+n+1)) 

 

It measures the degree to which an image is compressed. 

 

2. Mean Square Error(MSE): MSE is the measure of 

deterioration of image quality as compared to the 

original image when an image is compressed. It is 

defined as square of the difference between pixel value 

of original image and the corresponding pixel value of 
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the compressed image averaged over the entire image. 

Mathematically,  

MSE = [ ∑ ∑ g(x,y) – g‟(x,y) ] / (m*n) 

 

3. Power Signal to Noise Ratio (PSNR): As the name 

suggests, Peak Signal to Noise Ratio (PSNR) is the 

ratio of maximum signal power to the noise power that 

corrupts it. In Image compression maximum signal 

power refers to the original image and noise is 

introduced to compress it. In other words, noise is the 

deviation of the compressed image from the original 

one. Therefore, it follows that PSNR gives the quality 

of the reconstructed images after compression. 

Mathematically, PSNR is given by: 

PSNR = 10*log10 [255/√MSE] 

 

IV. RESULTS AND DISSCUSSION 

 

Images given below show the results of applying SVD on 

frames of video, taking different values of k. fig. 8 shows 

the original frame. When the value of k is taken as 5, the 

image is very blurred which is shown in fig. 1. k = 5 

means that the image is reconstructed considering only the 

first five eigen values of the matrix D. Fig. 2 shows the 

reconstructed image with k = 8 which is somewhat less 

distorted than fig. 1.  

 

 

By observing figures 1 to 6, it is clear that as the value of k 

(i.e. number of Eigen values used for reconstruction of the 

compressed image) is increased, the compressed image 

approaches the original image. This implies that image 

quality goes on increasing as the value of k is increased. 

When k is equal to the rank of the image matrix, the 

reconstructed image is almost same as the original one. 

Mean Square Error (MSE) in this case is very less and 

PSNR is very high. This can be observed in fig. 7. 

 

All the above observations can be summarized in the form 

of a table as shown below: 

 

 
 

In the above table, degree of compression is measured 

using compression ratio and MSE & PSNR values 

expressed in dB are used as a measure of image quality. 

Following conclusions can be drawn on the basis of the 

above table 1 and figures (a) to (h):-  

 

1. Value of k represents the number of Eigen values used 

in the reconstruction of the compressed image. 

2. Smaller the value of k, the more is the compression 

ratio (i.e. less storage space is required) but image 

quality deteriorates (i.e. larger MSE and smaller PSNR 

values). 

3. As the value of k increases, image quality improves 

(i.e. smaller MSE and larger PSNR) but more storage 

space is required to store the compressed image. 

4. Thus, it is necessary to strike a balance between 

storage space required and image quality for good 

image compression. And from the above observations, 

it is found that optimum compression results are 

obtained when MSE of the compressed image is just 

less than or equal to 30dB (i.e. MSE ≤ 30dB). In our 

case, this is obtained when value of k is 128. 

5. Generally, choice of k depends on the application. For 

instance, in some applications, if image quality is 

important then higher values of k are chosen. But 

sometimes storage space is more important than image 

quality , in that case lower k values are taken. 

6. But, from equation (4) of section 4 above, it follows 

that value of k should be chosen such that, k < m*n/ 

(m+n+1). Therefore, in our case value of k should be 

smaller than 253 in order to achieve compression. 

7. When k is equal to the rank of the image matrix, the 

reconstructed image is almost same as the original one. 

And as k is increased further, there is very negligible 

decrease in MSE and increase in PSNR values. This 
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means that there is very negligible improvement in the 

image quality. 

 

All the above results can be graphically expressed as: 

 

 
Fig. 9 PSNR (dB) vs Normalized number of Eigen values 

plotted on logarithmic scale. 

 

 
Fig. 10 MSE(dB) vs Normalized number of Eigen values 

 

 
Fig. 11 Compression Ratio vs Normalized number of 

Eigen values 

 

VI. CONCLUSIONS  

 

Thus it is observed that SVD gives good compression 

results with less computational complexity compared to 

other compression techniques. A certain degree of 

compression as required by an application can be achieved 

by choosing an appropriate value of k (i.e. the number of 

eigen values). In other words, degree of compression can 

be varied by varying the value of k. However to achieve 

high value of compression ratio image quality is to be 

sacrificed .Therefore it is required to select proper value of 

k to choose between compression ratio and image quality. 

Once the value of k is selected for specific application or 

for specific video the same benchmark can be used for all 

the frames. Besides image compression, SVD finds 

application in noise reduction, face recognition, water 

marking, etc. 
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